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Abstract. A class of spherically symmetric mean-field models of self-gravitating systems is
defined by introducing a short-distance regularization of the gravitational interactions as an
effective description of the small-scale physics regardless of its precise physical origin, yet
retaining the lowered-Maxwellian ansatz on the distribution function as in the classic King
model. We show that with these models it is possible to precisely recover all the solutions of the
standard King model as well as to consistently describe highly concentrated density profiles.
Preliminary results indicate that the latter are in good agreement with observed density profiles
of some globular clusters deviating from the King model prediction in the inner regions. We
argue that this approach may be a first step towards a unified theoretical description of a wide
class of self-gravitating systems.
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1. Introduction

Many stellar systems ranging from star clus-
ters to elliptical galaxies can be modeled, at
least as a first approximation, as purely self-
gravitating systems (SGSs). Spherically sym-
metric mean-field models as the King (1966)
model are the simplest ones able to reason-
ably describe the observed density profile of
a class of SGSs, i.e., non-collapsed globular
clusters (GCs). However, these models are un-
able to account for higher central concentra-
tions like those exhibited by post-core-collapse
clusters or for the density profile of most ellip-

tical galaxies. Moreover, high-resolution data
made available in the last decade revealed high
central concentrations also in some GCs pre-
viously considered as well described by King
models: roughly 50% of the sample considered
by Noyola & Gebhardt (2006) is not consistent
with the flat core predicted by King models. In
the following we shall consider King-like mod-
els where the gravitational interactions have
been regularized at small distance such as to
avoid the singularity of the potential. We shall
demonstrate that the regularization produces,
in addition to standard King flat-core profiles,
also other classes of more centrally concen-
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trated profiles. The latter profiles can be re-
garded as other “thermodynamic phases”, al-
though the system is out of thermal equilib-
rium.

Regularization can be achieved in many
ways (e.g. softening the potential or includ-
ing a hard-core repulsion); all involve a new
length scale a � R, where R is the size of
the system, such that the gravitational poten-
tial is modified for distances of order a. We
shall refer to a as the cutoff length. Some kind
of regularization is physically motivated by
the fact that at very small length scales com-
pared to R interactions, other than the gravi-
tational ones, exist; but is also needed to make
mean-field descriptions self-consistent (Nelson
& Tremaine 1999) or to make the equations of
motion numerically tractable in computer sim-
ulations. Hence, the regularization is typically
considered as a (sometimes unavoidable) nui-
sance. Our point of view is different: we con-
sider the insertion of a new length scale a � R
in the model as an effective way to take into ac-
count the small-scale physics that is lost when
a mean-field model is built (star-star correla-
tions, formation of binaries, and so on), regard-
less of its precise physical origin. Rather than
being a quantity to be kept as small as possible
so that it makes the smallest possible contribu-
tion to the physics, the small-scale cutoff a is a
free parameter of the model.

2. Models with short-range cutoff

A first investigation of a class of King-like
models with short-range cutoff was performed
by Casetti & Nardini (2012). The gravitational
interactions were regularized via a Plummer-
like softening, i.e., the 1/r potential energy be-
tween two stars of mass m at distance r was
replaced by

Va(r) = − Gm2

√
r2 + a2

, (1)

and then the lowered-Maxwellian form (King
1966) of the mass distribution function f (r, v)
was used. The potential (1) is not a Green func-
tion of the Laplace operator, so that there is
no longer a Poisson equation and one has to

solve a system of self-consistent integral equa-
tions to compute the mean-field potential ϕ(r),
from which the f (r, v) itself, the density pro-
file %(r) =

∫
dv f (r, v) and all the collective

physical quantities can be obtained. At a given
value of a, the solutions are parametrized by
the value W0 of the dimensionless central po-
tential, as in the King model. A convenient way
to describe the collective physical behaviour is
to plot the caloric curve, i.e., the global temper-
ature as a function of the total energy. Although
the system is not in thermal equilibrium one
can still define a global temperature T in terms
of the mean-field kinetic energy K (we set the
Boltzmann constant to unity)

3T
2

= K =
1
2

∫
dr dv v2 f (r, v) (2)

and a mean-field potential energy

U =
1
2

∫
dr %(r)ϕ(r) (3)

so that the total energy is E = K + U = 3T/2 +
U. Measuring distances in units of the tidal ra-
dius rt and masses in units of the total mass M
of the system one gets an energy scale GM2/rt
so that one can define a dimensionless energy
ε = Ert/(GM2), a dimensionless temperature
ϑ = Trt/(GM2), and a dimensionless cutoff
length α = a/rt. For the King model, i.e., when
α = 0, the caloric curve lies on a straight line
with slope −2/3 as a consequence of the virial
theorem. However, the King caloric curve has
a limited support: in terms of the dimension-
less variables ε and ϑ, one has −2.15 ≤ ε ≤
−0.60 and 0.40 ≤ ϑ ≤ 1.42. On the con-
trary, when α , 0, the caloric curve extends
down to the absolute minimum of the energy,
given by εmin = −1/(2α). In Fig. 1 the caloric
curve obtained with α = 3.15 × 10−3 is shown.
The figure clearly shows that one of the con-
sequences of the cutoff is to make states with
much lower energy than in the case of the
King model accessible. This notwithstanding,
the high-energy part of the caloric curve is re-
markably close to the King one, as shown in
Fig. 2. Already with α ≈ 3 × 10−3 also the
density profiles of the high-energy region are
nearly indistinguishable from those obtained
with the King model.
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Fig. 1. Caloric curve with a cutoff α = 3.15×10−3.
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Fig. 2. High-energy region of the caloric curve
with α = 3.15×10−2 (dashed curve), α = 3.15×10−3

(dot-dashed curve), α = 0 (solid curve). The dotted
line is the virial law.

2.1. Small cutoff and phase transition

Although the cutoff length α does not have a
precise physical meaning in terms of a spe-
cific “microscopic” process, being only an ef-
fective description of the small-scale physics,
one may safely argue that the value of α should
be bounded between the size of a star and the
average distance between stars. For a typical
GC these bounds roughly translate into 10−9 .
α . 5 × 10−2. Casetti & Nardini (2012) only
explored the range 2 × 10−3 . α . 5 × 10−2,
that is, rather large values of α. Unfortunately,
the numerical procedure employed by Casetti
& Nardini (2012) encounters serious conver-
gence problems at smaller α’s. In order to

overcome these difficulties, Lenzini & Casetti
(2016) considered a different regularization of
the potential, that is

Ṽa(r) = −Gm2

r

[
1 − exp

(
− r

a

)]
. (4)

At variance with the potential (1), the regular-
ized potential (4) is the Green function of a
differential operator (Alastuey 2013), so that
the mean-field potential obeys a generalized
fourth-order Poisson equation, of the form
(
−a242 + 4

)
ϕ(r) = 4πG%

[
ϕ(r)

]
, (5)

where 4 = ∇2 is the Laplace operator.
Equation (5) can be solved with standard nu-
merical methods and it is possible to reach val-
ues of α as small as 10−8 (see Lenzini & Casetti
2016 for details). Moreover, it is apparent that
Eq. (5) becomes the Poisson equation obeyed
by the King potential when a→ 0. For the val-
ues of α explored by Casetti & Nardini (2012),
Lenzini & Casetti (2016) obtain the same re-
sults. For α . 1.8 × 10−3 the caloric curve be-
comes singular: at an energy slightly smaller
than the minimum King energy there is a jump
in temperature (analogous to a first-order mi-
crocanonical phase transition) and, at an even
smaller energy, a gap in energy opens up where
no solutions are found (a “zero-order” phase
transition). Hence there are three “thermody-
namic phases” in the system: a high-energy
phase corresponding to the King energies, an
intermediate phase, and a low-energy phase
separated from the other two phases by the en-
ergy gap. As α gets smaller, the energy gap be-
comes larger and the intermediate phase col-
lapses onto the King one. Examples of density
profiles associated to the three “phases” are
plotted in Fig. 3 for α = 10−4. It is apparent that
the short-range cutoff allows to obtain very dif-
ferent density profiles, ranging from flat-core
King ones to highly collapsed ones, within the
same model. Moreover, the flat-core King pro-
files are the same regardless of the value of α,
provided α . 10−3.

3. Test with observed GC profiles

Since the King profiles are precisely recov-
ered for any sufficiently small α, the model
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Fig. 3. Density profiles with α = 10−4: high-
energy (King) phase (solid line), intermediate phase
(dot-dashed curve), and low-energy collapsed phase
(dashed curve).

with short-range cutoff describes the density
profiles of flat-core GCs equally well as the
original King model without cutoff. We then
made some preliminary tests of the predictions
of the model against observed density profiles
of GCs that exhibit significant deviations from
a flat core in the inner regions. Datasets were
constructed by merging high-resolution data
obtained from HST observations by Noyola
& Gebhardt (2006) at small radii (r . 102

arcsec) with ground-based data by Trager et
al. (1995) at lager radii. As an example, the
observed surface brightness profile of NGC
6093 (M 80) is plotted in Fig. 4, together
with a (projected) theoretical profile belong-
ing to the intermediate phase. The agreement is
good. Similar results can be obtained for other
GCs, for instance NGC 6624 and NGC 6293.
Profiles belonging to the low-energy, collapsed
phase reasonably agree with observations of
collapsed GCs like NGC 7099 (M 15), al-
though the inner brightness is systematically
overestimated. Detailed tests will be presented
elsewhere (Lenzini & Casetti 2016).

4. Conclusions

The models presented here do not aim at a de-
tailed description of the observed properties of
SGSs. Rather, they aim at showing that an ef-
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Fig. 4. Surface brightness profile of M 80 (points
with errorbars, from Noyola & Gebhardt 2006 and
Trager et al. 1995) compared to a theoretical profile
with α = 10−4 and W0 = 19.5 (solid line).

fective description of the small-scale physics
may be sufficient to predict very different den-
sity profiles within a single model. This may
be a first step towards a unified theoretical de-
scription of a large class of SGSs in terms of
simple models. The approach presented here
can be in principle applied also to more refined
distribution functions, as those used by Zocchi
et al. (2012) or by Gieles & Zocchi (2015).
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